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Computing Isogenies



Isogeny formula on Montgomery Elliptic Curves

Cyclic isogeny ¢ of odd degree with kernel G = (P) C E[/] on
E, . ..,2_.3 2
/Fq.y =x> 4+ Ax“ + x

is! ¢ (x,y) = (f(x), coyf'(x)) with

f(x):xl_lxxg_1

X — X,
geG g

1See Renes, “Computing Isogenies Between Montgomery Curves Using the Action of
(0, 0)"
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Efficiently evaluate Pg(x) = [[,c(x — Xxg) = Efficiently compute .

1See Renes, “Computing Isogenies Between Montgomery Curves Using the Action of
(0, 0)"
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Decomposing the polynomial in a BSGS fashion

Goal: Evaluate Pg(x).
Complexity?: Naive method in O(¢), today in O(+/7).

@_Eapwmﬁmup}

Take m = |V/{] and
G = {mIP, [4m]P, ... m(m — 1)]P

Pe(x)=  J] (= xpor)(x—xpepr)R(X) = Pe.c(x)R(x)
P1€G1,PEG

R(x) = Pg,(x)Pg,(x) Hog2f+1gm(x — X(@2i+1)m]P) HmQSigé—l(X — X(i1P)
Evaluating R(x) is in O(\/7).

2all complexities are given in terms of 4 operations
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The algebraic group law

Biquadratic expression of the group law:

(l—Xpl sz )2

(XPl —XP, )2

xp, +Xxp, +Xp; Xp, (2A+><p1 +xp, )
(XP1 7XP2)

XPi@&P,XP16P, =

Xpgp, + XPop, = 2

Grouping terms in pairs yields

h(X7 Xpy s XPz)

(X - XP1€BP2)(X - XP1®P2) = b(XP17XP2)



Rewriting Pg, ¢,

When x is fixed:

Poci)= [ Mexexe) _ 7 y
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where H(Y) = [[p,cq, h(x, Y, xp,) has degree 2|Gy| in Y, same for B.
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When x is fixed:

Poci)= [ Mexexe) _ 7 y

b(xp, , x
P1€G1,PEGy ( #0 PQ)

where H(Y) = [[p,cq, h(x, Y, xp,) has degree 2|Gy| in Y, same for B.

We focus on evaluating H at (xp,)p ¢, the same idea works for B.
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Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate
[1-,(X — &) at by, ..., b, in O(n).

Applying this on H when |G| = |G| ~ VI = (H(xp,))p,cq, is evaluated
in O(V7)

= [Ip,cq, H(xp,) computed in O(V/?) (same for B)

= Pg,.c,(x) is calculated in O(v/7)

= Evaluation of Pg at x in O(V/%).



Experimental Results

l q E Before | After
11677 | 7440 —1 y2=x3+x 14.880s | 0.160s
62501 | 480 —1 | y?2 =x3+6x2+x X 1.120s

Table 1: Magma implementation, comparison between my implementation of
the two methods
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Can we generalize it?

Goal: Compute Pg(x) = [[,cc(x — f(g)) where f : G — F.
Multiplicative group®: G =y, f = Id

L

Pe(x) =[x -¢)

i=1

Elliptic curve: G = (P) C E[{], f(P) = xp

Abelian variety of higher genuses?

3an additive version of this is presented in D. Chudnovsky and G. Chudnovsky,
“Computer algebra in the service of mathematical physics and number theory”
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