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2. A Generalization
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Computing Isogenies



Isogeny formula on Montgomery Elliptic Curves

Cyclic isogeny ϕ of odd degree with kernel G = 〈P〉 ⊂ E [`] on

E�Fq : y2 = x3 + Ax2 + x

is1 ϕ : (x , y) 7→ (f (x), c0yf
′(x)) with

f (x) = x
∏
g∈G

xxg − 1

x − xg

Efficiently evaluate PG (x) =
∏

g∈G (x − xg ) ⇒ Efficiently compute ϕ.

1See Renes, “Computing Isogenies Between Montgomery Curves Using the Action of

(0, 0)”
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Decomposing the polynomial in a BSGS fashion

Goal: Evaluate PG (x).

Complexity2: Naive method in O(`), today in Õ(
√
`).

Take m = b
√
`c and

G1 =
{
P, [2]P...., [m − 1]P

}
G2 =

{
[2m]P, [4m]P, ..., [m(m − 1)]P

}
PG (x) =

∏
P1∈G1,P2∈G2

(x − xP1⊕P2)(x − xP1	P2)R(x) = PG1,G2(x)R(x)

R(x) = PG1(x)PG2(x)
∏

0≤2i+1≤m(x − x[(2i+1)m]P)
∏

m2≤i≤`−1(x − x[i ]P)

Evaluating R(x) is in O(
√
`).

2all complexities are given in terms of Fq operations

3



Decomposing the polynomial in a BSGS fashion

Goal: Evaluate PG (x).

Complexity2: Naive method in O(`), today in Õ(
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The algebraic group law

Biquadratic expression of the group law:xP1⊕P2xP1	P2 =
(1−xP1xP2 )

2

(xP1−xP2 )2

xP1⊕P2 + xP1	P2 = 2
xP1+xP2+xP1xP2 (2A+xP1+xP2 )

(xP1−xP2 )2

Grouping terms in pairs yields

(x − xP1⊕P2)(x − xP1	P2) =
h(x , xP1 , xP2)

b(xP1 , xP2)
(1)
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Rewriting PG1,G2

When x is fixed:

PG1,G2(x) =
∏

P1∈G1,P2∈G2

h(x , xP1 , xP2)

b(xP1 , xP2)
=

∏
P1∈G1

H(xP1)

B(xP1)

where H(Y ) =
∏

P2∈G2
h(x ,Y , xP2) has degree 2|G2| in Y , same for B.

We focus on evaluating H at (xP1)P1∈G1
, the same idea works for B.
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Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate∏n
i=1(X − ai ) at b1, ..., bn in Õ(n).

Applying this on H when |G1| = |G2| '
√
` ⇒ (H(xP1))P1∈G1

is evaluated

in Õ(
√
`)

⇒
∏

P1∈G1
H(xP1) computed in Õ(

√
`) (same for B)

⇒ PG1,G2(x) is calculated in Õ(
√
`)

⇒ Evaluation of PG at x in Õ(
√
`).
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√
`)

⇒ Evaluation of PG at x in Õ(
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√
`)

⇒ Evaluation of PG at x in Õ(
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Experimental Results

` q E Before After

11677 744`− 1 y2 = x3 + x 14.880s 0.160s

62501 48`− 1 y2 = x3 + 6x2 + x 7 1.120s

Table 1: Magma implementation, comparison between my implementation of

the two methods
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A Generalization



Can we generalize it?

Goal: Compute PG (x) =
∏

g∈G (x − f (g)), where f : G → Fq.

Multiplicative group3: G ∼= µ`, f = Id

PG (x) =
∏̀
i=1

(X − ζ i )

Elliptic curve: G = 〈P〉 ⊂ E [`], f (P) = xP

PG (x) =
∏̀
i=1

(x − x[i ]P)

Abelian variety of higher genuses?

3an additive version of this is presented in D. Chudnovsky and G. Chudnovsky,

“Computer algebra in the service of mathematical physics and number theory”
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